Skip to main content
推荐文章:想成为高效数据科学家?不会Pandas怎么行
本站微文频道仅收录微信文章列表索引
点击这里去看文章全文

本文来自微信公众号:机器之心 | 发布时间:2019-02-09 11:11:42

点击查看原文
想成为高效数据科学家?不会Pandas怎么行

想成为高效数据科学家?不会Pandas怎么行

机器之心

选自 towardsdatascience

作者:Félix Revert

机器之心编译

参与:Nurhachu Null、张倩


Pandas 是为了解决数据分析任务而创建的一种基于 NumPy 的工具包,囊括了许多其他工具包的功能,具有易用、直观、快速等优点。要想成为一名高效的数据科学家,不会 Pandas 怎么行?


Python 是开源的,它很棒,但是也无法避免开源的一些固有问题:很多包都在做(或者在尝试做)同样的事情。如果你是 Python 新手,那么你很难知道某个特定任务的最佳包是哪个,你需要有经验的人告诉你。有一个用于数据科学的包绝对是必需的,它就是 pandas。



pandas 最有趣的地方在于里面隐藏了很多包。它是一个核心包,里面有很多其他包的功能。这点很棒,因为你只需要使用 pandas 就可以完成工作。


pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。


如果你早已熟知 python 的使用,可以直接跳到第三段。


让我们开始吧:


import pandas as pd

别问为什么是「pd」而不是「p」,就是这样。用就行了:)


pandas 最基本的功能


读取数据


data = pd.read_csv('my_file.csv')
data = pd.read_csv('my_file.csv', sep=';', encoding='latin-1', nrows=1000, skiprows=[2,5])

sep 代表的是分隔符。如果你在使用法语数据,excel 中 csv 分隔符是「;」,因此你需要显式地指定它。编码设置为'latin-1'来读取法语字符。nrows=1000 表示读取前 1000 行数据。skiprows=[2,5] 表示你在读取文件的时候会移除第 2 行和第 5 行。


  • 最常用的功能:read_csv, read_excel

  • 其他一些很棒的功能:read_clipboard, read_sql


写数据


data.to_csv('my_new_file.csv', index=None)

index=None 表示将会以数据本来的样子写入。如果没有写 index=None,你会多出一个第一列,内容是 1,2,3,...,一直到最后一行。


我通常不会去使用其他的函数,像.to_excel, .to_json, .to_pickle 等等,因为.to_csv 就能很好地完成工作,并且 csv 是最常用的表格保存方式。


检查数据



Gives (#rows, #columns)

给出行数和列数


data.describe()

计算基本的统计数据


查看数据


data.head(3)

打印出数据的前 3 行。与之类似,.tail() 对应的是数据的最后一行。


data.loc[8]

打印出第八行


data.loc[8'column_1']

打印第八行名为「column_1」的列


data.loc[range(4,6)]

第四到第六行(左闭右开)的数据子集


pandas 的基本函数


逻辑运算


data[data['column_1']=='french']
data[(data['column_1']=='french') & (data['year_born']==1990)]
data[(data['column_1']=='french') & (data['year_born']==1990) & ~(data['city']=='London')]

通过逻辑运算来取数据子集。要使用 & (AND)、 ~ (NOT) 和 | (OR),必须在逻辑运算前后加上「and」。


data[data['column_1'].isin(['french''english'])]

除了可以在同一列使用多个 OR,你还可以使用.isin() 函数。


基本绘图


matplotlib 包使得这项功能成为可能。正如我们在介绍中所说,它可以直接在 pandas 中使用。


data['column_numerical'].plot()


().plot() 输出的示例


data['column_numerical'].hist()

画出数据分布(直方图)


.hist() 输出的示例


%matplotlib inline

如果你在使用 Jupyter,不要忘记在画图之前加上以上代码。


更新数据


data.loc[8'column_1'] = 'english'

将第八行名为 column_1 的列替换为「english」


data.loc[data['column_1']=='french''column_1'] = 'French'


在一行代码中改变多列的值


好了,现在你可以做一些在 excel 中可以轻松访问的事情了。下面让我们深入研究 excel 中无法实现的一些令人惊奇的操作吧。


中级函数


统计出现的次数


data['column_1'].value_counts()


.value_counts() 函数输出示例


在所有的行、列或者全数据上进行操作


data['column_1'].map(len)

len() 函数被应用在了「column_1」列中的每一个元素上


.map() 运算给一列中的每一个元素应用一个函数


data['column_1'].map(len).map(lambda x: x/100).plot()

pandas 的一个很好的功能就是链式方法(https://tomaugspurger.github.io/method-chaining)。它可以帮助你在一行中更加简单、高效地执行多个操作(.map() 和.plot())。


data.apply(sum)

.apply() 会给一个列应用一个函数。


.applymap() 会给表 (DataFrame) 中的所有单元应用一个函数。


tqdm, 唯一的


在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。tqdm 是一个可以用来帮助预测这些操作的执行何时完成的包(是的,我说谎了,我之前说我们只会使用到 pandas)。


from tqdm import tqdm_notebook
tqdm_notebook().pandas()

用 pandas 设置 tqdm


data['column_1'].progress_map(lambda x: x.count('e'))

用 .progress_map() 代替.map()、.apply() 和.applymap() 也是类似的。


在 Jupyter 中使用 tqdm 和 pandas 得到的进度条


相关性和散射矩阵


data.corr()
data.corr().applymap(lambda x: int(x*100)/100)


.corr() 会给出相关性矩阵


pd.plotting.scatter_matrix(data, figsize=(12,8))


散点矩阵的例子。它在同一幅图中画出了两列的所有组合。



pandas 中的高级操作


The SQL 关联


在 pandas 中实现关联是非常非常简单的


data.merge(other_data, on=['column_1''column_2''column_3'])

关联三列只需要一行代码


分组


一开始并不是那么简单,你首先需要掌握语法,然后你会发现你一直在使用这个功能。


data.groupby('column_1')['column_2'].apply(sum).reset_index()

按一个列分组,选择另一个列来执行一个函数。.reset_index() 会将数据重构成一个表。


正如前面解释过的,为了优化代码,在一行中将你的函数连接起来。


行迭代


dictionary = {}

for i,row in data.iterrows():
 dictionary[row['column_1']] = row['column_2']

.iterrows() 使用两个变量一起循环:行索引和行的数据 (上面的 i 和 row)


总而言之,pandas 是 python 成为出色的编程语言的原因之一


我本可以展示更多有趣的 pandas 功能,但是已经写出来的这些足以让人理解为何数据科学家离不开 pandas。总结一下,pandas 有以下优点:


  • 易用,将所有复杂、抽象的计算都隐藏在背后了;

  • 直观;

  • 快速,即使不是最快的也是非常快的。


它有助于数据科学家快速读取和理解数据,提高其工作效率。


原文链接:https://towardsdatascience.com/be-a-more-efficient-data-scientist-today-master-pandas-with-this-guide-ea362d27386




本文为机器之心编译,转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

    发送中

    点击查看原文
    本文来自微信公众号:机器之心
    发布时间:2019-02-09 11:11:42

    微信号:almosthuman2014
    简 介:人与科技的美好关系



    本站文章为自动抓取,如有相关转载权限问题
    请邮件:admin@caup.net
    其他推荐
     

    用微信扫一扫